A two-reservoir recycling model for mantle-crust evolution.
نویسندگان
چکیده
The exact solutions for the isotopic compositions and the concentrations of the two-reservoir model for mantle-crust evolution are given for arbitrary rates of crustal growth and of back flow to the mantle. The critical parameters are the chemical fractionation factors for crustal growth and refluxing and the integrated fractional mass-removal rates from the crust and the mantle. For the case where refluxing is proportional to crustal growth, all the solutions reduce to simple analytic expressions. The expression for the mean age of the mass of the crust with refluxing is given. If refluxing is significant, the model shows that highly incompatible elements have short residence times in the mantle. With plausible concentration values, material balance implies that the continents were derived from only a small fraction of the mantle.
منابع مشابه
The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.
Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or ...
متن کاملChemical and Isotopic Constraints for the Martian Crust
Introduction: The Martian meteorite whole rock Rb-Sr isotopic compositions and the initial Pb data from plagioclase separates suggest strongly that the crust of their parent body originated from an ancient planetary global differentiation process about 4.5 Ga ago. The absence of plate tectonic activity on early Mars excludes a crustal recycling and preserves the isotopic systems derived from th...
متن کاملDistribution and evolution of carbon and nitrogen in Earth
In this paper we discuss the distribution, geochemical cycle, and evolution of CO 2 and N 2 in Earth's degassed mantle, and atmosphere plus continental crust. We estimate the present distribution of CO 2 and N 2 in Earth's degassed mantle based on amounts of He and Ar in the degassed mantle and observed outgassing ratios of CO2/He and N2/Ar at mid-ocean ridges. Estimated CO 2 in present degasse...
متن کاملContinental crust formation at arcs, the arclogite ‘‘delamination’’ cycle, and one origin for fertile melting anomalies in the mantle
The total magmatic output in modern arcs, where continental crust is now being formed, is believed to derive from melting of the mantle wedge and is largely basaltic. Globally averaged continental crust, however, has an andesitic bulk composition and is hence too silicic to have been derived directly from the mantle. It is well known that one way this imbalance can be reconciled is if the paren...
متن کاملOsmium isotopes and mantle convection.
The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion yea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 77 11 شماره
صفحات -
تاریخ انتشار 1980